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Analysis of Instability-Related Delamination Growth
Using a Crack Tip Element

Barry D. Davidson* and Todd M. Krafchakt
Syracuse University, Syracuse, New York 13244

One-dimensional delamination buckling and growth is analyzed using closed form cylindrical buckling and
crack tip element analyses. A cylindrical buckling analysis is used to determine the strains, curvatures, deflec-
tions, forces, and moments in a buckled region bounded by the laminate free surface and a near-surface
delamination. These results are used as input into a linear crack tip element analysis to obtain the total energy
release rate and individual mode I and mode II components. Geometric nonlinearities are accounted for through
the loading on the crack tip element. Total energy release rate and fracture mode ratio as found by this new
technique are shown to agree with nonlinear finite element results.

Introduction

EGIONS bounded by the laminate free surface and a

near-surface delamination in compression loaded com-
posite laminates may buckle locally. This local instability,
commonly referred to as delamination buckling, may create
the necessary conditions for delamination growth to occur.
Thus, laminate failure initiated by delamination buckling may
be a critical design concern for many composite structures.

To elucidate the fundamental mechanics controlling delami-
nation buckling and growth, a number of studies!-” have been
conducted on laminates containing a through-width delamina-
tion. The onset of delamination buckling has been predicted
by cylindrical buckling!~* and finite element analyses.>” In the
post-buckling regime, delamination growth is predicted to
occur when the energy release rate G equals or exceeds its
critical value G.. For many materials, G, is a function of
fracture mode ratio.® Thus, prediction of the individual energy
release rate components G; and Gy is also important in this
problem.

The value of the energy release rate in the post-buckling
regime has been predicted by closed form cylindrical buckling
analyses,!-3 nonlinear finite element analyses,>® and an ap-
proximate superposition analysis.*’7 The cylindrical buckling
analysis gives only the total energy release rate; fracture mode
ratio cannot be obtained. The approximate superposition
analysis may be used to obtain both energy release rate and
mode ratio. This approach consists of a set of linear, closed
form equations that use parameters, obtained by linear finite
element analysis, relating the energy release rate to load and
moment resultants in the post-buckled region. However, the
approximate superposition analysis has been shown to under-
predict the energy release rate and its individual mode I and
mode II components.® Nevertheless, this approach has been
used for qualitative investigations, because it correctly pre-
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dicts “‘trends”’ in the energy release rate and mode ratio and
circumvents the difficulty of obtaining nonlinear finite ele-
ment results.

In this work, a recently developed technique for predicting
mixed-mode energy release rates™!© is applied to the one-
dimensional delamination buckling problem. In this tech-
nique, a crack tip element is used to obtain the energy release
rate and fracture mode ratio. It is shown that a closed form,
nonlinear cylindrical buckling analysis to predict local load
and moment resultants, coupled with a closed form, linear
analysis of the crack tip element, may be used to predict
energy release rates and fracture mode ratios accurately for
the one-dimensional delamination buckling problem. The ac-
curacy of this new technique is demonstrated by comparison
with nonlinear finite element results.

Cylindrical Buckling Analysis

Figure 1 illustrates the geometry that is considered. The two
delaminations are assumed to exist at equal distances above
and below the laminate’s midplane. Referring to the figure,
the term ‘‘delaminated region’’ is used to denote the relatively
thin regions bounded by the delaminations and the laminate
free surfaces, and the term ‘‘base region’’ is used to denote the
center region bounded by the two delaminations.. The term
‘‘parent laminate’’ is used to denote the laminate outside of
the region in which the delaminations exist. It is assumed that
the parent laminate possesses midplane symmetry. It is also
assumed that the delaminated regions have flexural rigidities
that are small compared with that of the base region, and that
local buckling of the delaminated regions occurs without an
associated instability in the base region. )

Given the previous assumptions, the postbuckling behavior
of the delaminated region may be predicted by the cylindrical
buckling analysis developed by Yin.? It is assumed that the
parent laminate is subjected to applied loads or displacements
such that the midplane strains in the base region are given by

M

Considering the upper delaminated region, solutions are
sought for the postbuckling deformations of the form
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where o, £, {, 1, W, and A are constants, and «y, ,, and «,,
are the laminate curvatures ( = — 8’w/0x2, — 0?w/dy?, — 29*w/
dxdy) that appear in the laminated plate equations!!
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Employing the compatibility equations, the large-deforma-
tion plate equilibrium equations, and the kinematical constraint
that the total shortening of the delaminated region—due to
midplane straining and geometrical effects—equals the short-
ening of the base region due only to midplane straining, the
following values are obtained?
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Fig. 1 Laminate with two symmetrically located delaminations.
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Fig. 2a Post-buckled shape, showing internal load and moment re-
sultants.
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Fig. 2b Crack tip element and local loading.

The critical strain is €, i.€., it is the magnitude of the strain
in the x direction, in the base region, when the delaminated
region buckles. All A;;, B;;, and Dj; in the preceding equations
are for the delaminated region.

Finally, to satisfy the zero-slope boundary conditions at the
delamination tips x = +a/2

A=2w/a (10)

Crack Tip Element Analysis

Figure 2a shows one-half of the laminate in its postbuckled
state. In the figure and text that follow, the superscript D is
used to denote quantities for the delaminated region, B is used
for the base region, and P is used for the parent laminate. The
forces and moments depicted in the figure are internal force
and moment resultants for the delaminated and base regions
at x = 0 and for the parent laminate in the ‘‘far-field.”

By symmetry, the loads in each of the delaminated regions
NP are equal, the moments MP are equal and opposite (as
shown), and the moments in the base region and parent lami-
nate are zero. Substituting Eq. (2) into the expression for NP
given by Eq. (3), using Eqs. (5) and (6) and evaluating the
result at x = 0 gives

NP = —\D* (11

where D* is given by Eq. (9) and is evaluated using the proper-
ties of the delaminated region. Equation (11) indicates that,
regardless of the far-field load, the buckled, delaminated region
carries only its local buckling load. In a similar manner, the
in-plane load acting on the base region at x = 0 is found to be

NE = —AB e, + A58+ A5~ (12)
and, by equilibrium considerations
NP =2NP + NB 13)

The moments acting on the delaminated regions at x = 0 are
found by substituting Eq. (2) into Eq. (3) to obtain

MP =BR(a+ £) + BBB + By + n) - DEWN/2  (14)

Figure 2b shows the crack tip element and local loading.
The crack tip element approach to predicting mixed-mode
energy release rates was first introduced in Ref. 9. The element
is assumed to be ‘‘cut’’ from the laminate very near the crack
tip. It is assumed that the length of the cracked and uncracked
sections of the element, ¢ and 6, respectively, are large with
respect to the element thickness, but are sufficiently small that
geometric nonlinearities are negligible. Thus, classical lami-
nated plate theory may be used to predict the deformation,
strain energy, and energy release rate of the crack tip element.
The effect of the geometric nonlinearities is wholly accounted
for through the loading on the element. Note that global
midplane symmetry is exploited in the element formulation.

By comparison with Fig. 2a, the loads acting on the crack
tip element are given by

N;=N? N,=NE/2
%)
N=N+N, M, = MP — NPw

The energy release rate of the crack tip element is obtained
through a modified virtual crack closure method and is ex-
pressed in terms of a concentrated crack tip shear force N, and
moment M,. The concentrated crack tip force and moment
are obtained through classical plate theory and fully character-
ize that portion of the loading on the crack tip element that
produces the stress intensity factor.®!9 Thus, the energy re-
lease rate of the element may be expressed in terms of only two
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parameters, namely N, and M., rather than the three quanti-
ties Ny, N>, and M,.

By linearity, the complex stress intensity factor may be
expressed as a linear combination of N, and M,. This opera-
tion introduces two unknown constants. These constants are
obtained by comparing the expression for the total energy
release rate, as derived from the stress intensity factor, to that
obtained through virtual crack closure. For fracture problems
in which crack growth is between orthotropic layers and the
crack tip stress field exhibits an inverse square root singular-
ity, the following equations are obtained®!°:

g1 =v2G, = =N~ sin @+ M.Ne, cos(@+T)  (16)
g =V2Gy = N.Ve, cos @ + M~N¢, sin(Q + T) amn

where g, and g, are proportional to the mode I and mode II
stress intensity factors, respectively. From Eqs. (16) and (17),
the total energy release rate G is given by

G =G+ G (18)
where

G = Yrg? Gy = g} 19)

The expressions for the concentrated crack tip force N, and
moment M, for the case where there is no moment in the
parent laminate and the parent laminate possesses midplane
symmetry is given by®!©

N,=—-Ni+ A4, A'N (20)

M, =M, — Nity/2 + (A,1,/2 — B)A'N 3}

The values of 4, B, D, A’, B’, and D’ used earlier, without
subscripts, refer to the parent laminate; when the subscript
““1”’ is used, they refer to the delaminated region; and when
the subscript ¢‘2’’ is used, they refer to the base region. For
any of these regions, it is assumed that the laminated plate
equations [see Eq. (3)] may be written as

N=A€& + Bk,
o 22)
M = Be, + Dk,
Or, in their inverted form
& =A'N+B'M
(23)

kxk =B'N+D'M

If A, B, D, A’, B’, and D’ are unsubscripted, then €2, «,, N,
and M are for the parent laminate. For the delaminated re-
gion, A, B, D, A’, B’, D', N, and M in Eqgs. (22) and (23) are
all given the subscript ‘“1.”” For the base region, 4, B, D, A’,
B’, D', N, and M in Eqgs. (22) and (23) are all given the
subscript ‘“2.”” Thus, if the laminate is in a state of plane strain

B=y=0

A =Af, A = AR A= Af
B =B B, = Bf} B, = B} 24
D =Df, D, =D} D, =D},

and A’, B’, and D’ for the different regions are found by
inverting Eq. (22). If the laminate is in a state of plane stress
B= nyfo, Y= stfo)

A= aff B’ =B{] D’ =5 (25)
where «; is the element in the first row, first column, 3;; is the
element in the first row, fourth column, and é,; is the element
in the fourth row, fourth column of the inverse of the coeffi-
cient matrix (for the parent laminate) of Eq. (3). 41, A%, By,

Bj, D{, and D; are defined in an analogous manner for the
delaminated and base regions. For plane stress, 4, B, and D
for each of the regions are found by inverting Eq. (23); v)f; and
»E are the major Poisson’s ratio and in-plane shear Poisson’s
ratio of the parent laminate, defined by

o |ab ag|(|ag agf)- 06
Vyy = AP AP AP AP

16 66 26 66
o |An Af <A£ A >1 .
®olAg AGI\|Af A

The values of T', ¢, and ¢, used in Eqgs. (16) and (17) are
given by>10

. C
sinl" = \/L% (28)
where
¢ =Aj+ A+ B{t, - Bit, + D{t¥/4 + Djt}/4
¢ =D{ +Dj (29)

C12:D2/t2/2—D{t1/2—B1’ —Bz,

and ¢, and #, are the thicknesses of the delaminated and base
regions, respectively, as shown in Fig. 2.

The value of Q is independent of the loading and must be
taken from a continuum analysis or other results from one
special loading case.>!® For many cases, (! may be taken
directly from Ref. 10, which gives this parameter as a function
of material property and thickness ratios of the cracked re-
gions. Also, the total energy release rate, as given by Eq. (18),
is independent of the value of Q. Thus, setting @ = Qs a simple
means of determining the total energy release rate and of -
identifying trends in the mode ratio.'?

The previous results are for a general crack tip element.”!?
To enforce the symmetry condition of Fig. 2b, namely that the
base region does not bend, take D; = 0. Further, since only
one-half of the parent laminate and of the base region are
considered in the crack tip element shown in Fig. 2b, take
A’ =2A4" of the full, symmetric parent laminate, and take
Aj = 2A45 of the full, symmetric base region. Note that as a
result of global symmetry, B; = 0.

Finally, note that when the effective stiffness of the base
region becomes very large as compared with that of the delam-
inated region, the crack tip element analysis gives results for
the “‘thin film”’ case.'"?

Finite Element Verification
Homogeneous Orthotropic Material

The first case considered is that of a homogeneous or-
thotropic material. The material properties of the base and
delaminated regions are equivalent and are given in Table 1.
The delaminated regions are each 0.4 mm thick, and the base
region is 8.0 mm thick. The delamination length @ (see Fig. 1)
is 30 mm. The laminate is assumed to be in a state of plane
strain (i.e., 8 = y = 0). Energy release rates and fracture mode
ratios for this particular laminate have previously been evalu-
ated using a nonlinear finite element analysis.!?

Equation (5) may be used to evaluate the delamination
buckling strain; for the material properties given in Table 1
and the previously specified thicknesses and delamination
length, this gives

Dﬂ 1r2t12
€ = N? A_ﬁ =32 585 um/m 30)

The loading on the crack tip element is given by Egs. (11-15).
Equations (4-10) allow this loading to be expressed solely in
terms of the base region strain ¢,. Thus, using these expres-



DAVIDSON AND KRAFCHAK: INSTABILITY DELAMINATION GROWTH 2133

300
250+ ©
O Finite element analysis [13] /
4 Crack tip element analysis
G 200 Y _\
2
(J/m%)
150
100
50
0 T T T 1
0.000 0.001 0.002 0.003 0.004

Applied Compressive Strain (m/m)

Fig. 3a Total energy release rate as predicted by nonlinear finite
element and crack tip element analyses—homogeneous orthotropic
material.
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Fig. 3b Fracture mode ratio as predicted by nonlinear finite element
and crack tip element analyses—homogeneous orthotropic material.

sions along with Egs. (16-21) allows the energy release rate
and individual mode I and mode II components to be ex-
pressed as a function of the base region strain. However, the
results for G, Gy, and Gy; reported in Ref. 13 are in terms of
the “‘applied compressive strain”’ ¢,. This value is defined such
that the applied displacement at the uncracked end of the
finite element model u, is given by

U, = €L €2))

where L is the total length of the model. That is, in this
reference, the finite element model was essentially a discretiza-
tion of Fig. 2b. The model was fixed, with respect to in-plane
displacements, at the cracked end (the right end in Fig. 2b) and
the uncracked end was subjected to incrementally increasing
in-plane compressive displacements u,. The total model length
L (& + & in Fig. 2b) was 50 mm.!* The half-crack length ¢, was
15 mm. To relate the applied compressive strain ¢, to the base
region strain ey, break the total displacement up into the sum
of the displacement in the parent laminate plus that in the
region containing the delamination, i.e.,

GaL = Ea(fl + fz) = Eofl + ep ez (32)

where ¢p is the magnitude of the strain in the parent laminate.
Now use Eqgs. (23) to express €p in terms of the load in the
parent laminate N7 and use Eq. (13), N¥ = 2NP? + N2, where
NP is given by Eq. (11) and N2 is given by Eq. (12). Also, use
the fact that the delaminated region, base region, and parent

laminate are all symmetric about their own midplane and are
in a state of plane strain, to obtain

ep = @QNDE + ABeg)/Af (33)

Substituting Eq. (33) into Eq. (32) gives the base region strain
in terms of the applied compressive strain as

el + ) — 20D /Af
B 0+ 6AB/AR

€y (34)

Using Eq. (34) and the preceding results, the energy release
rate, as predicted by the crack tip element approach, may now
be expressed in terms of the applied strain for direct compari-
son to the nonlinear finite element results. This comparison is
presented in Figs. 3a and 3b. Note from these figures that
essentially the same results are predicted for the total energy
release rate and fracture mode ratio by the two methods. The
value of © used for the crack tip element predictions in the
figures was taken from Ref. 10; for the material properties
given in Table 1, this reference gives £ = 20 deg.

Note from Fig. 3b that the energy release rate becomes pure
mode II at an applied strain of approximately 0.004. For strains
larger than this value, the mode I stress intensity factor becomes
negative, and the mode I energy release rate is actually a closing
mode. That is, for ¢,>0.0043 m/m, the crack tip element
analysis predicts g, <0 [see Eq. (16)]. For the finite element
analysis, crack face interpenetration is predicted for applied
strains greater than this value. To obtain accurate energy
release rates beyond this point, crack face contact restraints
are required within the nonlinear finite element analysis.

It should also be pointed out that, in the approximate super-
position analysis, it is assumed that the strains in the parent
laminate and base region are equal. If the correspondence
between these values as given by Egs. (31-34) is used, the
approximate superposition analysis gives the same results as
the crack tip element approach. The approximate superposi-
tion analysis does not, however, account for the possibility of
various coupling behaviors (i.e., bending-stretching, stretch-
ing-shearing, or bending-shearing) in the delaminated or base
regions. It is therefore only applicable, with the previous
modification, to the case in which A4, By, and Bjg of the
delaminated and base regions are zero. Conversely, the crack
tip element approach may be thought of as the generalization
of this earlier analysis.

Graphite/Epoxy Laminate

The second case considered is that of a [0,/90/0,]s, graphite/
epoxy laminate with delaminations at the interfaces of the
fifth and sixth and the 25th and 26th plies. The delamination
length a was taken equal to 50.8 mm. The laminate is assumed
to be in a state of plane strain. Unidirectional material proper-
ties for the graphite/epoxy are given in Table 2. Energy release
rates and fracture mode ratios for this laminate were obtained
by nonlinear finite element analysis using ABAQUS 4-9-1,
licensed from Hibbitt, Karlsson, and Sorensen, Inc.

Table 1 Material properties for homogeneous, orthotropic material

E1; = 52.58 GPa viz = 0.305 G2 =20.14 GPa
E» = 52.58 GPa v13 = 0.330 G13 = 4.48 GPa
E33 = 12.66 GPa v23 = 0.330 Gz = 4.48 GPa

Table 2 Unidirectional material properties for graphite/epoxy?

Exx = 124.11 GPa Vry = 0.37 Gy = 5.45 GPa
E,, = 10.34 GPa vz = 0.37 Gy; = 5.45 GPa
Ez = 10.34 GPa vye = 0.35 Gy = 3.86 GPa

3Gingle ply thickness: 1.27 X 10~% m.
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Model Description

Similar to that described earlier, the finite element model
that we developed was essentially a discretization of Fig. 2b.
That is, symmetry with respect to the x and z axes was
exploited, allowing only one-quarter of the full geometry of
Fig. 1 to be modeled. The half-crack length £ was 25.4 mm,
and the overall model length ¢ + £ was 73.0 mm. The model
is shown in Fig. 4. Except for the more refined region in the
crack tip neighborhood, we used 15 elements through the
thickness of the model, i.e., one element per ply. The aspect
(Iength-to-width) ratio of all elements was kept below 6.25.
The model contained 2126 elements and 13,608 global degrees
of freedom. Eight node, biquadratic, plane strain continuum
elements were used.

Figure 5 presents a plot of the finite element mesh in the
crack tip region. The elements at the crack tip are square, and
the element size A/h is equal to 0.25, where A is the length of
the element and 4 is the single ply thickness. This accuracy of
this near tip meshing method is demonstrated in Ref. 10. This
reference presents convergence studies and comparisons of
energy release rates and mode ratios as obtained by this mesh
to those obtained by more conventional meshing methods. %6513
This meshing method predicts the same results as conventional
methods; however, fewer elements are required.!® Also, it is
very simple to refine this mesh locally at the crack tip. For
example, in our mesh refinement studies, we considered ele-
ment sizes at the crack tip as small as A/A equal to 0.125; this
more refined mesh gave energy release rates and fracture mode
ratios within 0.4 percent of those obtained from the mesh
pictured.

Referring to Fig. 2b, symmetry boundary conditions were
prescribed by constraining displacements with respect to x
along the right edge (i.e., the edge containing the crack) of the
model and by constraining displacements with respect to z
along the lower surface. Displacements were applied in the x

Fig. 4 Finite element model.

/_ free surface

\-— crack

Fig. 5 Near tip region of finite element model.

direction along the left (uncracked) edge of the model; all
nodes along this edge were constrained to displace by the same
amount. Initially, a linear buckling analysis was performed. -
The deflected shape, as predicted by the buckling analysis, was
reduced by 99.9 percent and used as an initial imperfection in
a second run to obtain postbuckling response. Displacements,
along the left edge, were applied incrementally, and the equi-
librium equations, with respect to the deformed geometry,
were solved at each increment. Energy release rate compo-
nents were obtained by the virtual crack closure technique.!®

Determination of 2

For this particular geometry, we determined Q by a single
linear finite element analysis of the crack tip element geome-
try. As described in previous works,”!? a loading was chosen
that 1) created no forces and moments in the parent laminate
and 2) caused M, = 0. The loading we chose was N; = 17,513
N/m, N = —17,513 N/m and M, = 5.56 Nm/m; using the
virtual crack closure technique,!’ we obtained G; = 0.59 J/m?
and Gy = 8.81 J/m2. By Eq. (16), for this particular loading

sin@ = —v2G,;/N.Ve; 35
which»gives Q= 14.6 deg.

Results

Similar to that done for the previous case, Eqs. (31-34) were
used to compare the energy release rate and mode ratio as
predicted by the nonlinear finite element and crack tip element
analyses as a function of the applied compressive strain. These
comparisons are presented in Figs. 6a and 6b. As for the

1400 4
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Crack tip element analysis
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800 -
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0 T T T T T 1
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Fig. 6a Total energy release rate as predicted by nonlinear finite
element and crack tip element analyses—[02/90/03]3s laminate.
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Applied Compressive Strain (m/m)
Fig. 6b Fracture mode ratio as predicted by nonlinear finite element
and crack tip element analyses—{02/90/0;]3; laminate.
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L

Fig. 7a Deformed mesh plot at an applied strain of 0.00111 m/m.

Fig. 7o Deformation of crack tip region at an applied strain of
0.00111 m/m.

e

Fig. 7¢ Deformed mesh plot at an applied strain of 0.00405 m/m.

Fig. 7d Deformation of crack tip region at an applied strain of
0.00405 m/m.

previous case, essentially the same results are obtained by the
two methods. Also as in the previous case, the energy release
rate is seen to be predominantly mode 11, with the ratio Gii/G
increasing with increasing applied compressive strain. This

is further illustrated in Fig. 7. Figure 7a presents a deformed

mesh plot, and Fig. 7b shows a plot of the crack tip region at
an applied strain of 0.00111 m/m. Note From Fig. 7b that

both opening and shearing mode deformations are evident.
The mode ratio Gy;/G at this strain level was 0.77. Figures 7¢
and 7d show plots of the full deformed mesh and of the crack
tip region at an applied strain of 0.00405 m/m. This corre-
sponded to a mode ratio of 0.99. As would be expected, a
comparison of Figs. 7a and 7c indicates that the global separa-
tion of the crack faces increases with increasing applied strain.
A comparison of Figs. 7b and 7d indicates that, as the applied
strain increases, the local deformation transitions to a pre-
dominantly shearing mode. This transition occurs because the
difference in midplane strain between the delaminated and base
regions becomes more pronounced. That is, the delaminated
and base regions must shorten by the same amount. As the
applied strain increases, all shortening of the base region occurs
as a result of midplane straining. However, in its postbuckled
state, the load in the delaminated region does not increase [see
Eq. (11)] and all shortening occurs due to the geometrical
effect associated with the out-of-plane deformation.

As the applied strain continues to increase, Gy;/G —1, the
crack faces continue to close and crack face contact, followed
by interpenetration, is observed. The crack tip element analy-
sis predicts crack face contact will occur at an applied strain of
0.0056 m/m. Because we did not obtain finite element output
at each increment of applied strain (this would have made our
output- files unmanageably large), we could not verify this
prediction exactly. However, from the output we did obtain,
crack face contact was predicted to occur between an applied
strain of 0.0051 and 0.0061 m/m. Considering the excellent
correlation between crack tip element and finite element re-
sults evidenced in Figs. 6a and 6b, it is likely that predictions
of crack face contact by the two methods were consistent.

Conclusions

A new approach has been presented to predict mixed-mode
energy release rates in the one-dimensional delamination
buckling problem. This approach uses a closed form, nonlin-
ear cylindrical buckling analysis to obtain the force and mo-
ment resultants in the base laminate, parent laminate, and
postbuckled delaminated region, and a closed form, crack tip
element analysis to determine energy release rate and fracture
mode ratio. It has been shown that this new approach gives the
same results as geometrically nonlinear finite element analyses.

The crack tip element approach does not completely elimi-
nate the need for finite element analyses; rather, one finite
element analysis must still be performed to get the unknown
coefficient Q. It has been shown in previous works®!? that it is
simplest and most accurate to obtain this coefficient by per-
forming a finite element analysis of the crack tip element
under one special loading case chosen such that M. = 0. How-
ever, only a single linear run need be performed; this new
approach obviates the need for nonlinear analyses. Further,
this linear analysis need only be of the crack tip region; the
full, cracked geometry need not be modeled.!? Also, for many
practical geometries, the value of 2 may be found in a recently
published work.® If one does not wish to perform any finite
element work, and the value of Q cannot be taken directly
from Ref. 10, setting @ = 0 is a useful means of identifying
general trends in mode ratio; this approach will also give
correct results for total energy release rate. In fact, this ap-
proach is wholly sufficient for those material systems where
the fracture toughness does not exhibit fracture mode ratio
dependence. ] ;

For many practical problems involving instability-related
delamination growth, delamination growth occurs between
plies with dissimilar orientations. For this case, with linear
elastic material properties, a crack tip oscillating singularity is
predicted to exist, and a fracture mode ratio cannot be
uniquely defined.!? The effect on the crack tip element analy-
sis is that a unique value of Q cannot be obtained. That is, the
value of 2, as obtained from a linear finite element analysis,
will not converge with increasing amounts of mesh refine-
ment. It was proposed in a previous work!? that, for these
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cases, one of Dundurs’ generalized parameters for the specific
interfacial region containing the crack be taken equal to zero
in the numerical model. This method provides a relatively
simple means of eliminating the problems associated with the
oscillating singularity while still obtaining physically meaning-
ful results.

Finally, the crack tip element approach to obtain energy
release rate and mode ratio has been applied herein to the
problem of delamination buckling. However, the general for-
mulation developed in Refs. 9 and 10 allows this approach to
be applied to virtually any delamination problem of practical
interest. Along with the proposed method of eliminating the
difficulties associated with the oscillating stress singularity,'?
this approach offers a powerful means of solving a wide
variety of delamination growth problems. For example, it has
recently been shown that this approach may be used to predict
mixed-mode energy release rates in the free edge delamination
problem for mechanical, hygrothermal, or combined loadings. 2
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